54 research outputs found

    Extended-spectrum beta-lactamases-producing <i>Escherichia coli</i> in common vampire bats <i>Desmodus rotundus</i> and livestock in Peru

    Get PDF
    Antibiotic resistance mediated by bacterial production of extended‐spectrum beta‐lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital‐acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL‐producing bacteria. Only limited data are available on the circulation of ESBL‐producing bacteria in animals. Here, we report ESBL‐producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of blaCTX‐M‐15 genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species‐specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic‐resistant strains of public health importance and to understand the origin of the observed resistance

    Ecological and evolutionary drivers of hemoplasma infection and bacterial genotype sharing in a Neotropical bat community

    Get PDF
    Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a speciesâ€rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and twoâ€thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand crossâ€species transmission and the epidemiological consequences of bacterial pathogens

    Rates of Viral Evolution Are Linked to Host Geography in Bat Rabies

    Get PDF
    Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative Bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics

    Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats

    Get PDF
    The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (β-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of β-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations

    Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats

    Get PDF
    The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (β-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of β-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations

    Diseases and Causes of Death in European Bats: Dynamics in Disease Susceptibility and Infection Rates

    Get PDF
    Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date.) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated.Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats

    Variation in RNA Virus Mutation Rates across Host Cells

    Get PDF
    It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature

    Bats host major mammalian paramyxoviruses

    Get PDF
    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data

    Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Get PDF
    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts
    corecore